Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.03.23.23287633

ABSTRACT

In the era of living with COVID-19, the risk of localised SARS-CoV-2 outbreaks remains. Here, we develop a multi-scale modelling framework for estimating the local outbreak risk for a viral disease (the probability that a major outbreak results from a single case introduced into the population), accounting for within-host viral dynamics. Compared to population-level models previously used to estimate outbreak risks, our approach enables more detailed analysis of how the risk can be mitigated through pre-emptive interventions such as antigen testing. Considering SARS-CoV-2 as a case study, we quantify the within-host dynamics using data from individuals with omicron variant infections. We demonstrate that regular antigen testing reduces, but may not eliminate, the outbreak risk, depending on characteristics of local transmission. In our baseline analysis, daily antigen testing reduces the outbreak risk by 45% compared to a scenario without antigen testing. Additionally, we show that accounting for heterogeneity in within-host dynamics between individuals affects outbreak risk estimates and assessments of the impact of antigen testing. Our results therefore highlight important factors to consider when using multi-scale models to design pre-emptive interventions against SARS-CoV-2 and other viruses.


Subject(s)
COVID-19
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.02.23.529742

ABSTRACT

During the COVID-19 pandemic, human behavior change as a result of nonpharmaceutical interventions such as isolation may have induced directional selection for viral evolution. By combining previously published empirical clinical data analysis and multi-level mathematical modeling, we found that the SARS-CoV-2 variants selected for as the virus evolved from the pre-Alpha to the Delta variant had earlier and higher infectious periods but a shorter duration of infection. Selection for increased transmissibility shapes the viral load dynamics, and the isolation measure is likely to be a driver of these evolutionary transitions. In addition, we showed that a decreased incubation period and an increased proportion of asymptomatic infection were also positively selected for as SARS-CoV-2 mutated to the extent that people did not isolate. We demonstrated that the Omicron variants evolved in these ways to adapt to human behavior. The quantitative information and predictions we present here can guide future responses in the potential arms race between pandemic interventions and viral evolution.


Subject(s)
COVID-19
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.07.05.22277283

ABSTRACT

Antibody titers wane after two-dose COVID-19 vaccinations, but individual variation in vaccine-elicited antibody dynamics remains to be explored. Here, we created a personalized antibody score that enables individuals to infer their antibody status by use of a simple calculation. We recently developed a mathematical model of B cell differentiation to accurately interpolate the longitudinal data from a community-based cohort in Fukushima, Japan, which consists of 2,159 individuals who underwent serum sampling two or three times after a two-dose vaccination with either BNT162b2 or mRNA-1273. Using the individually reconstructed time course of the vaccine- elicited antibody response, we first elucidated individual background factors that contributed to the main features of antibody dynamics, i.e., the peak, the duration, and the area under the curve. We found that increasing age was a negative factor and a longer interval between the two doses was a positive factor for individual antibody level. We also found that the presence of underlying disease and the use of medication affected antibody levels negatively, whereas the presence of adverse reactions upon vaccination affected antibody levels positively. We then applied to these factors a recently proposed computational method to optimally fit clinical scores, which resulted in an integer-based score that can be used to evaluate the antibody status of individuals from their basic demographic and health information. This score can be easily calculated by individuals themselves or by medical practitioners. There is a potential usefulness of this score for identifying vulnerable populations and encouraging them to get booster vaccinations.


Subject(s)
COVID-19
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.11.22276266

ABSTRACT

Recent studies have provided insights into the effect of vaccine boosters on recall immunity. Given the limited global supply of COVID-19 vaccines, identifying vulnerable populations with lower sustained vaccine-elicited antibody titers is important for targeting individuals for booster vaccinations. Here we investigated longitudinal data in a cohort of 2,526 people in Fukushima, Japan, from April 2021 to December 2021. Antibody titers following two doses of a COVID-19 vaccine were repeatedly monitored and information on lifestyle habits, comorbidities, adverse reactions, and medication use was collected. Using mathematical modeling and machine learning, we stratified the time-course patterns of antibody titers and identified vulnerable populations with low sustained antibody titers. Moreover, we showed that only 5.7% of the participants in our cohort were part of the "durable" population with high sustained antibody titers, which suggests that this durable population might be overlooked in small cohorts. We also found large variation in antibody waning within our cohort. There is a potential usefulness of our approach for identifying the neglected vulnerable population.


Subject(s)
COVID-19
5.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.27.482147

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant BA.2 has spread in many countries, replacing the earlier Omicron subvariant BA.1 and other variants. Here, using a cell culture infection assay, we quantified the intrinsic sensitivity of BA.2 and BA.1 compared with other variants of concern, Alpha, Gamma, and Delta, to five approved-neutralizing antibodies and antiviral drugs. Our assay revealed the diverse sensitivities of these variants to antibodies, including the loss of response of both BA.1 and BA.2 to casirivimab and of BA.1 to imdevimab. In contrast, EIDD-1931 and nirmatrelvir showed a more conserved activities to these variants. The viral response profile combined with mathematical analysis estimated differences in antiviral effects among variants in the clinical concentrations. These analyses provide essential evidence that gives insight into the impact of variant emergence on choosing optimal drug treatment.


Subject(s)
Coronavirus Infections
6.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.22.481436

ABSTRACT

Mutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic mutations that may arise in clinical environments and assess their properties in advance to quickly implement countermeasures against future variant infections. In this study, we identified mutations resistant to remdesivir, which is widely administered to SARS-CoV-2-infected patients, and discuss the cause of resistance. First, we simultaneously constructed eight recombinant viruses carrying the mutations detected in in vitro serial passages of SARS-CoV-2 in the presence of remdesivir. Time course analyses of cellular virus infections showed significantly higher infectious titers and infection rates in mutant viruses than wild type virus under treatment with remdesivir. Next, we developed a mathematical model in consideration of the changing dynamic of cells infected with mutant viruses with distinct propagation properties and defined that mutations detected in in vitro passages canceled the antiviral activities of remdesivir without raising virus production capacity. Finally, molecular dynamics simulations of the NSP12 protein of SARS-CoV-2 revealed that the molecular vibration around the RNA-binding site was increased by the introduction of mutations on NSP12. Taken together, we identified multiple mutations that affected the flexibility of the RNA binding site and decreased the antiviral activity of remdesivir. Our new insights will contribute to developing further antiviral measures against SARS-CoV-2 infection.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
7.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.24.22269769

ABSTRACT

Appropriate isolation guidelines for COVID-19 patients are warranted. Currently, isolating for fixed time is adapted in most countries. However, given the variability in viral dynamics between patients, some patients may no longer be infectious by the end of isolation (thus they are redundantly isolated), whereas others may still be infectious. Utilizing viral test results to determine ending isolation would minimize both the risk of ending isolation of infectious patients and the burden due to redundant isolation of noninfectious patients. In our previous study, we proposed a computational framework using SARS-CoV-2 viral dynamics models to compute the risk and the burden of different isolation guidelines with PCR tests. In this study, we extend the computational framework to design isolation guidelines for COVID-19 patients utilizing rapid antigen tests. Time interval of tests and number of consecutive negative tests to minimize the risk and the burden of isolation were explored. Furthermore, the approach was extended for asymptomatic cases. We found the guideline should be designed considering various factors: the infectiousness threshold values, the detection limit of antigen tests, symptom presence, and an acceptable level of releasing infectious patients. Especially, when detection limit is higher than the infectiousness threshold values, more consecutive negative results are needed to ascertain loss of infectiousness. To control the risk of releasing of infectious individuals under certain levels, rapid antigen tests should be designed to have lower detection limits than infectiousness threshold values to minimize the length of prolonged isolation, and the length of prolonged isolation increases when the detection limit is higher than the infectiousness threshold values, even though the guidelines are optimized for given conditions.


Subject(s)
COVID-19
8.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.08.21264782

ABSTRACT

Background In-person interaction at school and offices offers invaluable experience to students and benefits to companies. In the midst of the pandemic, ways to safely go back to schools and offices have been argued. Centers for Disease Control and Prevention (CDC) recommends taking all precautions such as vaccination and universal indoor masking. However, even if all the precautions are implemented and transmission is perfectly prevented in the facilities, they may be infected outside of the facilities, which would be a source of transmission in the facilities. Therefore, identifying those infected outside of the facility through screening is essential to safely go back to schools or offices. However, studies investigating the effectiveness of screening are limited. Further, it is not well clarified now which screening strategy (e.g., low or high sensitivity antigen tests, intervals and the number of tests) effectively identify infected and infectious individuals to avoid transmission in facilities Methods We assessed the effectiveness of various screening strategies in schools and offices through quantitative simulation. The effectiveness was assessed by the proportion of identified infected and infectious participants. Infection dynamics in the facility is governed by transmission dynamics of the population they belong to, and the screening is initiated at different epidemic phases: growth, peak, and declining phases. The viral load trajectory over time for each infected individual was modelled by the viral dynamics model, and the transmission process at the population level was modelled by a deterministic compartment model. The model parameters were estimated from clinical and epidemiological data. Screening strategies were varied by antigen tests with different sensitivity and schedules of screening over 10 days. Results Under the daily screening, we found high sensitivity antigen tests (the detection limit: 6.3 × 10 4 copies/mL) yielded 88% (95%CI 86-89) of effectiveness by the end of 10 days screening period, which is about 20% higher than that with low sensitivity antigen tests (2.0 × 10 6 copies/mL). Comparing screening scenarios with different schedules, we found early and frequent screening is the key to maximize the effectiveness. Sensitivity analysis revealed that less frequent tests might be an option when the number of antigen tests is limited especially when the screening is performed at the growth phase. Discussion High sensitivity antigen tests, high frequency screening, and immediate initiation of screening are the key to safely restart educational and economic activities allowing in-person interactions. Our computational framework is useful in assessment of screening strategies by incorporating additional factors for specific situations.


Subject(s)
COVID-19
9.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3631397

ABSTRACT

Antiviral treatments targeting the coronavirus disease 2019 (COVID-19) are urgently required. We screened a panel of already-approved drugs in a cell culture model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and identified two new agents having higher antiviral potentials than the drug candidates such as remdesivir and chroloquine: the anti-inflammatory drug Cepharanthine and HIV protease inhibitor Nelfinavir. Cepharanthine inhibited SARS-CoV-2 entry into cells, whilst Nelfinavir inhibited the catalytic activity of viral main protease to suppress viral replication. Consistent with their different modes of action, in vitro assays highlight a synergistic effect of this combined treatment to limit SARS-CoV-2 proliferation. Mathematical modeling in vitro antiviral activity coupled with the known pharmacokinetics for these drugs predicts that Nelfinavir will shorten the period until viral clearance by 5.5-days and the combining Cepharanthine/Nelfinavir enhanced their predicted efficacy to control viral proliferation. In summary, this study identifies a new multidrug combination treatment for COVID-19.Funding: This work was supported by The Agency for Medical Research and Development (AMED) emerging/re-emerging infectious diseases project (JP19fk0108111, JP19fk0108110, JP20fk0108104); the AMED Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS, JP19am0101114, JP19am0101069, JP19am0101111) program; The Japan Society for the Promotion of Science 260 KAKENHI (JP17H04085, JP20H03499, JP15H05707, 19H04839); The JST MIRAI program; and Wellcome Trust funded Investigator award (200838/Z/16/Z). Conflict of Interest: None.


Subject(s)
Coronavirus Infections , Dyskinesia, Drug-Induced , HIV Infections , COVID-19
10.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.16.20132985

ABSTRACT

The incubation period, or the time from infection to symptom onset of COVID-19 has been usually estimated using data collected through interviews with cases and their contacts. However, this estimation is influenced by uncertainty in recalling effort of exposure time. We propose a novel method that uses viral load data collected over time since hospitalization, hindcasting the timing of infection with a mathematical model for viral dynamics. As an example, we used the reported viral load data from multiple countries (Singapore, China, Germany, France, and Korea) and estimated the incubation period. The median, 2.5, and 97.5 percentiles of the incubation period were 5.23 days (95% CI: 5.17, 5.25), 3.29 days (3.25, 3.37), and 8.22 days (8.02, 8.46), respectively, which are comparable to the values estimated in previous studies. Using viral load to estimate the incubation period might be a useful approach especially when impractical to directly observe the infection event.


Subject(s)
COVID-19
11.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.30.20118067

ABSTRACT

Development of an effective antiviral drug for COVID-19 is a global health priority. Although several candidate drugs have been identified through in vitro and in vivo models, consistent and compelling evidence for effective drugs from clinical studies is limited. The lack of evidence could be in part due to heterogeneity of virus dynamics among patients and late initiation of treatment. We first quantified the heterogeneity of viral dynamics which could be a confounder in compassionate use programs. Second, we demonstrated that an antiviral drug is unlikely to be effective if initiated after a short period following symptom onset. For accurate evaluation of the efficacy of an antiviral drug for COVID-19, antiviral treatment should be initiated before or soon after symptom onset in randomized clinical trials.


Subject(s)
COVID-19
12.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.14.039925

ABSTRACT

Antiviral treatments targeting the emerging coronavirus disease 2019 (COVID-19) are urgently required. We screened a panel of already-approved drugs in a cell culture model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and identified two new antiviral agents: the HIV protease inhibitor Nelfinavir and the anti-inflammatory drug Cepharanthine. In silico modeling shows Nelfinavir binds the SARS-CoV-2 main protease consistent with its inhibition of viral replication, whilst Cepharanthine inhibits viral attachment and entry into cells. Consistent with their different modes of action, in vitro assays highlight a synergistic effect of this combined treatment to limit SARS-CoV-2 proliferation. Mathematical modeling in vitro antiviral activity coupled with the known pharmacokinetics for these drugs predicts that Nelfinavir will facilitate viral clearance. Combining Nelfinavir/Cepharanthine enhanced their predicted efficacy to control viral proliferation, to ameliorate both the progression of disease and risk of transmission. In summary, this study identifies a new multidrug combination treatment for COVID-19.


Subject(s)
COVID-19 , Coronavirus Infections
13.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.30.20040519

ABSTRACT

Importance: Although the COVID-19 epidemic in some countries such as China are in the last phase by large effort for containment of the disease, another outbreaks can occur because huge susceptible population remains. Further, there remain countries in the early phase of outbreak with zero or limited number of cases in southern hemisphere countries. In those countries at risk of future outbreak, ascertaining whether cases are imported or the result of local secondary transmission is important for government to shape appropriate public health strategies. Objective: To develop a method to estimate timing of infection establishment, which helps differentiate imported and autochthonous cases. Design, Setting and Participants: Of the first 18 cases reported in Singapore, 12 were used in our study (1 case with insufficient data and 5 on anti-viral treatment were excluded from the analysis). The viral load data from these initial cases considered imported due to their travel history to Wuhan were analyzed. Another viral load data from 3 cases reported from Zhuhai, China, for whom exposed day were known, were also analyzed to determine the viral load threshold for infection establishment. Exposures: SARS-CoV-2 infection confirmed by the polymerase-chain-reaction (PCR) test. Main Outcomes and Measures: The timing of infection establishment of each case was assessed by analysing viral load data after symptom onset using a within-host viral dynamics model for SARS-CoV-2. Estimated timing of infection will indicate whether cases are imported or autochthonous transmission within Singapore. Results: Six among the 12 cases were clearly imported cases, whereas we could not rule out the possibility of secondary transmission for the rest of 6 cases, which collectively evidenced ongoing transmission in Singapore. For the 6 cases who could be the results of secondary transmission, further investigation to identify the source of infection within Singapore should be warranted (i.e., contact tracing). Conclusions and Relevance: In an early phase of outbreak due to entrance or re-entrance of the virus to countries/communities, collecting viral load data over time from cases from symptom onset is highly recommended, because viral load data are valuable to infer the timing of infection and distinguish between imported cases and ongoing local transmission.


Subject(s)
COVID-19
14.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.23.20040493

ABSTRACT

The scientific community is focussed on developing antiviral therapies to mitigate the impacts of the ongoing novel coronavirus disease (COVID-19) outbreak. This will be facilitated by improved understanding of viral dynamics within infected hosts. Here, using a mathematical model in combination with published viral load data collected from the same specimen (throat / nasal swabs or nasopharyngeal / sputum / tracheal aspirate), we compare within-host dynamics for patients infected in the current outbreak with analogous dynamics for MERS-CoV and SARS-CoV infections. Our quantitative analyses revealed that SARS-CoV-2 infection dynamics are more severe than those for mild cases of MERS-CoV, but are similar to severe cases, and that the viral dynamics of SARS-CoV infection are similar to those of MERS-CoV in mild cases but not in severe case. Consequently, SARS-CoV-2 generates infection dynamics that are more severe than SARS-CoV. Furthermore, we used our viral dynamics model to predict the effectiveness of unlicensed drugs that have different methods of action. The effectiveness was measured by AUC of viral load. Our results indicated that therapies that block de novo infections or virus production are most likely to be effective if initiated before the peak viral load (which occurs around three days after symptom onset on average), but therapies that promote cytotoxicity are likely to have only limited effects. Our unique mathematical approach provides insights into the pathogenesis of SARS-CoV-2 in humans, which are useful for development of antiviral therapies.


Subject(s)
Coronavirus Infections , Drug-Related Side Effects and Adverse Reactions , Severe Acute Respiratory Syndrome , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL